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“* n =14 distributed survey respondents with Amazon Mechanical Turk
“ Resting Heart Rate Calculation
I. Data Is classified into 4 intensity levels and METSs is captured to further
classify heart rate at resting state.
“* Anomaly Detection in Heart Rate Risk Levels
I. Isolation Forest: The data space Is randomly split into partitions to detect
outliers in heart rate indicating the level of the anomaly score.
1I. Local Outlier Factor: Local density amongst k=20 nearest neighbors Is
analyzed to determine outliers in a particular subset of the heartrate data Medium-Risk and High-Risk Level Distribution

*» Maternal health is a critical concern in lower income areas contributing to
95% of maternal deaths in 2020 due to several factors such as, limited
access to prenatal care, racism, age, and education level [1].

» In the United States, Black women have a maternal mortality rate of greater
than 2.9 times higher than that of White women [2].

¢ Maternal Black women are at a 126%b higher risk of cardiovascular disease
and 80% greater risk of postpartum readmission [3].

*» Today’s market of wearable sensor maternal monitoring technology Is
costly, relies on two-way clinician communication, and lacks education.

*» The combination of Local Outlier Factor and Isolation Forest anomaly
scores, along with Standard Deviation Z-Scores, reveals overlapping risk
assessments In the medium and high-risk categories, underscoring the
efficacy of anomaly detection methods working in parallel.

¢ The Isolation Forest algorithm identifies a significant number of anomalies
at the lower threshold of heart rate readings compared to the Local Outlier
Factor, indicating its effectiveness in detecting subtle irregularities.
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and Local Outlier Factor (right) plots, categorized into low, medium, and high bins.
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